(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(0, x), 1) → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(f(0', x), 1') → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
f(f(0', x), 1') → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

Types:
f :: 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f

(6) Obligation:

TRS:
Rules:
f(f(0', x), 1') → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

Types:
f :: 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g

Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))

The following defined symbols remain to be analysed:
f

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) → *3_0, rt ∈ Ω(n40)

Induction Base:
f(gen_0':1':g2_0(+(1, 0)), gen_0':1':g2_0(b))

Induction Step:
f(gen_0':1':g2_0(+(1, +(n4_0, 1))), gen_0':1':g2_0(b)) →RΩ(1)
g(f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b))) →IH
g(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
f(f(0', x), 1') → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

Types:
f :: 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g

Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))

No more defined symbols left to analyse.

(10) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) → *3_0, rt ∈ Ω(n40)

(11) BOUNDS(n^1, INF)

(12) Obligation:

TRS:
Rules:
f(f(0', x), 1') → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))

Types:
f :: 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g

Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) → *3_0, rt ∈ Ω(n40)

(14) BOUNDS(n^1, INF)